Bayesian Model Selection for Heteroskedastic Models

نویسندگان

  • W. S. Chen
  • Richard Gerlach
  • Mike K. P. So
چکیده

It is well known that volatility asymmetry exists in financial markets. This paper reviews and investigates recently developed techniques for Bayesian estimation and model selection applied to a large group of modern asymmetric heteroskedastic models. These include the GJR-GARCH, threshold autoregression with GARCH errors, threshold GARCH and Double threshold heteroskedastic model with auxiliary threshold variables. Further we briefly review recent methods for Bayesian model selection, such as: reversible jump Markov chain Monte Carlo, Monte Carlo estimation via independent sampling from each model and importance sampling methods. Seven heteroskedastic models are then compared, for three long series of daily Asian market returns, in a model selection study illustrating the preferred model selection method. Major evidence of nonlinearity in mean and volatility is found, with the preferred model having a weighted threshold variable of local and international market news.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Bayesian Autoregressive Conditional Heteroskedastic Models

A variational Bayesian autoregressive conditional heteroskedastic (VB-ARCH) model is presented. The ARCH class of models is one of the most popular for economic time series modeling. It assumes that the variance of the time series is an autoregressive process. The variational Bayesian approach results in an approximation to the full posterior distribution over ARCH model parameters, and provide...

متن کامل

Volatility forecasting using threshold heteroskedastic models of the intra-day range

This paper provides an effective approach for forecasting return volatility via threshold heteroskedastic models of the daily asset price range, defined as the difference between the highest and lowest log asset price recorded throughout the day. We propose a general model specification, allowing the intra-day high-low price range to depend nonlinearly on past information, or an exogenous varia...

متن کامل

Accounting for outliers and heteroskedasticity in multibreed genetic evaluations of postweaning gain of Nelore-Hereford cattle.

The objectives of this study were to demonstrate the utility of hierarchical Bayesian models combining residual heteroskedasticity with robustness for outlier detection and muting and to evaluate the effects of such joint modeling in multibreed genetic evaluations. A 3 x 2 factorial specification of 6 residual variance models based on several distributional (Gaussian, Student's t, or Slash) and...

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap

This paper provides Bayesian rationalizations for White’s heteroskedastic consistent (HC) covariance estimator and various modifications of it. An informed Bayesian bootstrap provides the statistical framework.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007